Scale-dependent mechanical properties of native and decellularized liver tissue.
نویسندگان
چکیده
Decellularization, a technique used in liver regenerative medicine, is the removal of all the cellular components from a tissue or organ, leaving behind an intact structure of extracellular matrix. The biomechanical properties of this novel scaffold material are currently unknown and are important due to the mechanosensitivity of liver cells. Characterizing this material is important for bioengineering liver tissue from this decellularized scaffold as well as creating new 3-dimensional mimetic structures of liver extracellular matrix. This study set out to characterize the biomechanical properties of perfused liver tissue in its native and decellularized states on both a macro- and nano-scale. Poroviscoelastic finite element models were then used to extract the fluid and solid mechanical properties from the experimental data. Tissue-level spherical indentation-relaxation tests were performed on 5 native livers and 8 decellularized livers at two indentation rates and at multiple perfusion rates. Cellular-level spherical nanoindentation was performed on 2 native livers and 1 decellularized liver. Tissue-level results found native liver tissue to possess a long-term Young's modulus of 10.5 kPa and decellularized tissue a modulus of 1.18 kPa. Cellular-level testing found native tissue to have a long-term Young's modulus of 4.40 kPa and decellularized tissue to have a modulus of 0.91 kPa. These results are important for regenerative medicine and tissue engineering where cellular response is dependent on the mechanical properties of the engineered scaffold.
منابع مشابه
Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملAltered structural and mechanical properties in decellularized rabbit carotid arteries.
Recently, major achievements in creating decellularized whole tissue scaffolds have drawn considerable attention to decellularization as a promising approach for tissue engineering. Decellularized tissues are expected to have mechanical strength and structure similar to the native tissues from which they are derived. However, numerous studies have shown that mechanical properties change after d...
متن کاملDecellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation
This study undertook to create small-diameter vascular grafts and assess their structure and mechanical properties to withstand arterial implantation. Twenty samples of intact human internal mammary arteries (IMAs) were collected and decellularized using detergent-based methods. To evaluate residual cellular and extracellular matrix (ECM) components, histological analysis was performed. Moreove...
متن کاملThe effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall.
The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2013